Arithmetic Progressions with Common Difference Divisible by Small Primes

نویسنده

  • N. Saradha
چکیده

n(n + d) . . . (n + (k − 1)d) = by (1.1) in positive integers n, k ≥ 2, d > 1, b, y, l ≥ 3 with l prime, gcd(n, d) = 1 and P (b) ≤ k. We write d = D1D2 (1.2) where D1 is the maximal divisor of d such that all prime divisors of D1 are congruent to 1 ( mod l). Thus D1 and D2 are relatively prime positive integers such that D2 has no prime divisor which is congruent to 1 (mod l). Shorey [Sh88] proved that (1.1) implies that

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic Progressions of Primes in Short Intervals

Green and Tao proved that the primes contains arbitrarily long arithmetic progressions. We show that, essentially the same proof leads to the following result: If N is sufficiently large and M is not too small compared with N , then the primes in the interval [N, N + M ] contains many arithmetic progressions of length k.

متن کامل

Primes in arithmetic progressions

Strengthening work of Rosser, Schoenfeld, and McCurley, we establish explicit Chebyshev-type estimates in the prime number theorem for arithmetic progressions, for all moduli k ≤ 72 and other small moduli.

متن کامل

Long Arithmetic Progressions of Primes

This is an article for a general mathematical audience on the author’s work, joint with Terence Tao, establishing that there are arbitrarily long arithmetic progressions of primes.

متن کامل

Sieve Methods Lecture Notes, Part I the Brun-hooley Sieve

A sieve is a technique for bounding the size of a set after the elements with “undesirable properties” (usually of a number theoretic nature) have been removed. The undesirable properties could be divisibility by a prime from a given set, other multiplicative constraints (divisibility by a perfect square for example) or inclusion in a set of residue classes. The methods usually involve some kin...

متن کامل

The primes contain arbitrarily long arithmetic progressions

We prove that there are arbitrarily long arithmetic progressions of primes. There are three major ingredients. The first is Szemerédi’s theorem, which asserts that any subset of the integers of positive density contains progressions of arbitrary length. The second, which is the main new ingredient of this paper, is a certain transference principle. This allows us to deduce from Szemerédi’s theo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007